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INVESTIGATION OF A NONLINEAR CONTROL SYSTEM!

By I. Flugge-Lotz, C. F. Taylor, and H. E. Lindberg

SUMMARY

Nonlinear elements are sometimes added to linear conirol
systems in order to improve the response of the system to an
arbitrary input. This can be done in different ways, one of
them being the variation of the coefficients of the differential
equation describing the system before the nonlinear elements are
‘added. This variation of the coefficients may be done in a
continuous or in a discontinuous way. In the present paper
a discontinuous variation of the coefficients is studied in detail
and investigated for practical use.

The nonlinear feedback is applied to a second-order system.
From former analytical considerations the process of conirol is
visualized as establishing an ensemble of linear second-order
differential equations (some with stable and some with unstable
homogeneous solutions) and switching from one equation to
another 80 as to maintain small instantaneous error for rela-
tively arbitrary inputs. Physically, this conirol process is
realized with a linear second-order conirol system to whick have
been added possible discrete combinations of proportional and
derivative feedback. The particular combination of feedback
employed at any instant is determined by a feedback switching
circuit which is in turn operated by sensed binary information
obtained from the owtput, output derivative, error, and error
derivative (namely, the signs of these variables). Techniques
that are common to the digital computer field are used to imple-
ment this switching circuit.

Once physical realization ts completed, simulation technigques
are used to study and eraluate the performance of the nonlinear
control system and to compare i with a linear system for a wide
rariety of inputs. A detailed quaniitative study of the influence
of relay delays and of a transport delay is also given. In
addition, the effects of physical imperfections that are likely to
be encountered in any application of the control theory are con-
sidered (e. g., velocity and acceleration limits).

An analysis of the experimental results shows that this type
of nonlinear conirol system performs better than a linear condrol
system having a natural frequency 16 times greater. For this
comparison, performance is evaluated in terms of the average
value of the magnitude of the instantaneous error for band-
limited inputs. Further, in conirast with the linear system, the
nonlinear system performance is virtually independent of vari-
ation in the damping factor of the system.

A preliminary extension of this type of nonlinear conirol
concept to higher order systems is presented. Experimental

~

results are given for a third-order system. These results show
that just as in the second-order case the nonlinear system per-
formance i3 better than that of a comparable linear system.

INTRODUCTION

With the demand for more exacting performance, more
emphasis has been placed on nonlinear aspects of control
systems. The term ‘“‘control systems’’ can be interpreted

.to include active networks and feedback amplifiers as well as

servomechanisms. From the standpoint of analysis, un-
intentional nonlinearities have to be taken into account to
explain performance. From the standpoint of synthesis,
intentional nonlinearities have been introduced to improve
performance. However, up to this date only in special
cases have advancements been obtained in the field of
nonlinear control systems.

The designs of nonlinear control systems have inherent
advantages. One advantage is that the response of a non-
linear system at a certain time can be made less dependent
upon past response than can a linear system of comparable
power-handling capability.? This means that the non-
linear system can be made to follow more arbitrary classes
of inputs with less dynamic error than the comparable linear
system. Another advantage is that the mathematical
difficulties encountered may actusally be conducive to con-
sideration of more realistic criteria of performance. In the
nonlinear realm it is essentially as easy to invoke a criterion
such as the minimization of instantaneous error for non-
stationary random inputs as it is to invoke the largest
possible flat amplitude response for sinusoidal inputs.

In the present paper a control system of second order,
which was first suggested by Fligge-Lotz and Wunch on
the basis of analytical studies (vef. 1), is investigated. The
physical realization of this system and its performance are
studied in great detail by Dr. I. Fltigge-Lotz and Dr. C. F.
Taylor. A detailed quantitative study of the influence of
relay delays and of a transport delay was made by Dr. H. E.
Lindberg and is given in appendix A.

This investigation was conducted at Stanford University
under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics. The
authors wish to thank Dr. A. M. Peterson of the Electrical
Engineering Department of Stanford University for his
confinued interest and his most helpful advice on the

1 Bupersedes NACA TN 3828, ‘‘Investigation of a Nonlinear Control 8ystem” by I. Flilgge-Lotz and O. F. Taylor, 1857.
7 In linear theory, the Impulss response or the autocorrelation function of the system gives an indication of how past response is weighed.
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electronic problems which were encountered during this
investigation. They also wish to thank Dr. G. S. Bahrs for
his useful suggestions for a special transistor switching
circuit.

SYMBOLS
A peak-to-peak amplitude of input
a,b,c parameters defining a system
atbt et constants used in appendix B
ab,c, parameters in differential equation for control
Servo i
B viscous damping of motor and reflected load
referred to motor shaft
D linear damping factor
E=y—x=—e
e instantaneous error, z—y
f function
gngo input and output of Padé circuit, respectively
H(p) transfer function, 1/(ep+1)
I inertia of motor rotor, gears, and reflected load
1=y —1
K,K, gain constants
km constant of proportionality between output
velocity and back electromotive force
AM constant depending on initial conditions
P operator, indicating differentiation with re-
spect to independent variable; that is, d/dt if
real time variable is used and d/dr if non-
dimensional time variable is used
T repetition rate or period
t time
ts switching delay .
tma maximum allowable switching delay
14 input voltage
x input into system
Y output from system
i approximation of output
a symbol used to denote different constants

Bn=—18 5gn, (y'e)—2f sgn (y'e’)

(BoayYw) min smallest values of parameters giving good
nonlinear system performance

1B,28,17,2v7 positive constants

Ya=—17 Sgn (ye)—zy sgn (ye’)

6 positive constant

€ small positive quantity

Ly coordinates introduced in appendix E

P radius of curvature

- real part of complex frequency variable o+4iw

T nondimensional time variable normalized with
respech to w,, w,i

Q nondimensional frequency, w/w,

2] frequency

Wy natural frequency of undamped linear system

sgn () =f/l] '

() ) time average

() d( )/dr

) d( )/d+

equality sign in equations which describe
operations (see eqs. (2) and (3))
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Subscripts:

as at an actual switch point
d ideal or desirable '

e error

1 initial or input

m image ,

L limit '
lin linear 0
mmn=0,1,2,3

maz maximum or upper bound
min minimum or lower bound
nonlin nonlinear

0 optimum, output

REVIEW OF LINEAR CONTROL THEORY

It is desirable to obtain from linear control theory some
useful concepts that can be generalized to the nonlinear
case. These concepts are:

(1) Operational notation
(a) Transfer functions
(b) Block-diagram representations
(2) Control criteria
-(3) Control through parameters
At the onset second-order systems are considered. How-
ever, there is no difficulty in extending these concepts to
higher order systems.

OPERATIONAL NOTATION, TRANSFER FUNCTIONS, AND BLOCK DIAGRAMS

Consider a physical process or situation in which the
output is described in terms of the input as

Py Ly,
ath-i-b dt-l-cy—m(t) (1)
where a, b, and ¢ are constants, y=y() is the output, and
z=2x(t) is the input.

Utilizing the operator p=d/dt, equation (1) may be
written

(ap*+bp+eo)y=2 @)

(Eq. (2) reads “(ap®*+bp+c) operating on y equals opera-
tionally z.””) Formal solution of equation (2) for the ratio
of output over input yields by definition the operational
transfer function for the system. Thus

Yo 1
r ap*t+bptec 3

The operational block diagram for the system is obtained by
placing inside a box the transfer function, equation (3).
Coming into the box is the input; going out of the box is the
output (see sketch a).

z 1 v
Input | ap*+bp+c | Output
Sketch a

Here transfer functions and block diagrams are utilized
merely as shorthand operational notations for differential
equations. This is opposed to the Laplace transformation
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viewpoint where transfer functions (and thus block dia-
grams) have the properties of functions of the complex
frequency variable, p=c¢-+1iw. The reason for stressing this
interpretation is that shorthand (operational) notation has
proven useful in the transition to nonlinear control whereas
the Laplace transformation viewpoint (e. g., synthesis in
the complex frequency plane in terms of poles and zeros)

has not.
CONTROL CRITERIA

To gage the performance of an actual system an ideal or
desirable system is usually established as a straight through
connection (i. e., s~z as denoted in sketch b, a block dia-
gram of an ideal system).

xr Ya
| 1
Input .

Output

Sketch b

Comparison between the desired output y, and actual out-
put ¥ is8 accomplished by utilizing the instantaneous error:

- e=a—y)=(—Y)
A control criterion or criterion of performance is defined as
the minimization of some property of the instantaneous
error e for a given class of inputs. The minimizing process

can be exact (i. e., resulting from a variational formulation
of the problem) or approximate.

CONTROL THROUGH PARAMETERS

In linear systems the process of control is usually physi-
cally obtained by applying feedback and/or compensation
to the system that is to be controlled. A control criterion
is realized (as closely as possible) by adjustment of these
applied !quantities. The concept of control through param-
elers is an interpretation of this control process in terms
of the differential equation describing the process. - A simple
example illustrates this concept.

Consider the position control servo shown in figure 1.
The uncontrolled (open-loop) system consists of an amplifier,
armature-controlled motor, gear train, and load. Closed-
loop operation is obtained by wutilizing proportional and
derivative feedback. The gain constants K, and K, are

adjustable. Armature inductance has been neglected.
~Summing points-—.__ Motor, gear train, and load-+
4\ p ) P P
Input ! plp+ B) Output
. Gain -
Ky 2
Gain Tachometer

Figumre 1.—Block diagram of simple positional servo.
motor rotor, gears, and reflected load; B, viscous damping of motor
and reflected load referred to motor shaft; %, constant of propor-
tlonality between output velocity and back electromotive force (it
includes armsature resistance and gear ratio from motor shaft to
load).

J, inertia of
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From the block diagram the differential equation for the
open-loop system may be written:

() (L) ey -~ @
Similarly, the closed-loop differential equation is
B+ K, d
() B Y y==t0 @

In either case the differential equation is of the form
_dy rdy, - ’ ‘
T LUtE St Ey=a(r) (©)

where a set of three parameters a, 3, and ¢ completely
characterizes the system. It is possible, then, to view the
process of control in terms of these parameters. One starts
with a parameter set (,b,c) defining the uncontrolled system.
A control criterion yields an optimum parameter set
(a,b,c),. Control (feedback and/or compensation) is intro-
duced ideally making it possible to adjust (a,b,c) to (a,b,c),.
In the above example the gain constants K; and K, afford
this adjustment.

This adjustment of the coefficients may be done in a con-
tinuous or a discontinuous way. Inreference 2 Schmidt and
Triplett have described an interesting and efficient way to
vary the coefficients of a basically linear system continuously.

NONLINEAR CONTROL

TRANSITION TO NONIINEA]i CONTROL

In the preceding section it has been mentioned that the
process of linear control of second-order systems may be
visualized as the adjustment of the parameter set (a,b,c) to
the set (a,b,c),. The term optimum was used in the sense
that some criterion of performance was approached as closely
as possible.

It still seems logical in the transition to nonlinear control to
hypothesize control through parameters. The transition is
obtained by allowing the parameters to become functions of
the output ¥(t) and the input z(z); that is,

a——;a,(:c,y) A
b—b(z,y). -
c—c(zy) |

The mathematwal description of the system is now
A

alz) Th+d@a) & dt+c(x,y)y—z(t) @

Without knowing the specific nature of the functions a(z,y),
b(z,y), and c(z,y) it may be seen that equation (7) is a non-
linear, inhomogeneous, and/or nonautonomous differential
equation. Mathematically, little in general can be said
about the solution of equation (7) given the function set
a(z,y), b(z,y), and c(z,y). It seems, then, even more hopeless
to attempt a synthesis problem Whlch mvolves both finding
the function set [a(z,y), b(2,y), ¢(x,y)], for a specified control
criterion and then physically realizing the system described
mathématically. .
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NONLINEAR CONTROL THEORY

One analytical attack on the nonlinear control-system-
synthesis problem has been made by Fliigge-Lotz and Wunch
(refs. 1 and 3 to 5). They suggested varying the coefficients
a, b, and ¢, not continuously, but discontinuously. That
means that for $,<¢<#, there is one set of coefficients, for
£,<{t<t; there is another set of coefficients, and so on. The
different sets of coefficients are chosen in advance, but the
times ¢, for change from one set to another are determined
by the velue and the decrease or increase of the deviation
(z-y). In other words, the system is linear in any interval
t,<t<tyu, but is nonlinear in the whole. The transition at
any switching time ¢; occurs with continuous values of y(z)
and dy/dt, but discontinuous values of (d*y/d®).

Bn Im
i Damping R Gain
1
i —
LR il 3 -
[28 f—— | 27 2 .
! : B'. T : noT
-T- T 7% JEE -1 - T ]
: BO : : /o) !

T -

Fraure 2.—Ilustration of stepwise nature of parameters S and y,.

Phase-plane techniques were used for studying appropri-
ate sets of coefficients and the appropriate dependence of the
switching times on the deviations.® The authors of references
1 and 3 to 5 succeeded in finding a switching rule which
assures good performance in & multitude of cases. Their
control system is mathematically described in the following
way:

Y 12D (+60) Bt (1Hv)y=2() ®)
where
z(7) input
y(7) output
D linear damping factor (when 8,=v,=0)
T nondimensional time variable normalized with re-
spect t0 w,; that is, 7=—w,t
Wy natural frequency of undamped linear system,
D—ﬁm—')f:—o
Bn= —18 sgn (y'e)—285gn (¥'e)
m=0,1, 2, 3
yn= —rv 5gn (ye)—zv sgn (ye’)
n=0, 1, 2, 3,

18,28,17,2y positive constants

()= +1 for >0

€ —1 for <0
3Fordetaﬁsthereadgrhrermedtomtm-encesl and 3to 5. Referenco 1 contains the ideas

but is s0 condensed that the inquisitive reader will find it useful to read references 3 to 5, of

which refercnce § Is probably the most accessible. Figure 8, p. 12, and figure 30, p. 70, of

reference 5 will help In getting acquainted with the phase-plane trajectory of an output. Some

of the original studles are described agaln later in the present paper when the performance
of the system Is discussed.
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¢ instantaneous error, e=a—y)= (z—7)
( )Y=d( )lar

Actually, equation (8) is a normalized form of the control
equation derived by Flugge-Lotz and Wunch. However,
the notation has been somewhat changed. See appendix B
for a comparison of notations and the normalization involved.

The subscript convention is

Bs=18-+3B Ys=17+2v

Ba=18—28 Ya=1Y—2Y

Bi=—18tB=—F n=—1rtor=—7 ©
o=—18—28=—F;  M=—1y—¥=—7;

PROPERTIES OF EQUATION (8)

The following properties of equation (8) are noteworthy:

(1) Equation (8) is a piecewise linear but overall nonlinear
differential equation.

(2) The parameters 8, and v, are stepwise switching func-
tions of time (their implicit variable). This property is
llustrated in figure 2.

(3) The time of switching and the particular combination
of the parameters 8. and v, employed at any instant are
explicit functions of the output ¥ and the input z. Spe-
cifically, they are determined by quantized information
derived from the output, output derivative, error, and error
derivative, namely, the sign of the products sgn (y’e), sgn
(y'e’), sgn (ye), and sgn (ye’).

(4) There are basically 16 m,n subscript combinations and
thus 16 Ba,v. parameter combinations. However, a detailed
study of property (3) shows that only 8 are allowed. The
allowed combinations may be

m=n=0, 1, 2, 3
or
m=n

m+n=3

The reason for the ‘‘exclusion principle” on coefficient
combinations stems from a desire to obtain mirrored-image
outputs for mirrored-image inputs; that is,

. . Yim(7)=—y(7)
is desired when
T (1) =—2(7)

(6) The control criterion that was employed in obtaining
the furictional dependence of 8,, and v, was

[ya—yl=lz—yl=le|<e

where ¢ is a small positive quantity. ‘This criterion of main-
tenance of small instantaneous error between desired output
and actual output enabled reduction of equation (8) to the
approximate sutonomous differential equation (see refs. 1
and 3 to 5)

Y +2D(14Ba)y +vay=(—y)
=0 (10)

Thus phase-plane techniques could be employed to find the
functional dependence of 8, and ..
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(6) Once the linear damping factor D is fixed the process
of control is obtained by switching parameters 8. and va.
Equation (8) consists of an ensemble of eight (see property
(4)) linear differential equations with constant coefficients.
The process of control may be visualized as the switching
from one member of the ensemble to another. This switch-
ing is determined by quantized information derived from the
input and output (see property (3)). From another point
of view (consistent with the approximation described in
property (5)), the output y is to be forced to satisfy two
conditions simultaneously, that is, both sides of equation
(10). This is approximately possible by switching to
various B8, and v, parameter combinations and can be
visualized as the process of switching to various phase
trajectories of equation (10) in the phase plane of y’ against y.

DISCUSSION OF NONLINEAR CONTROL

In the section entitled “Transition to Nonlinear Control”
a logical transition to nonlinear control systems utilizing the
concept of control through parameters is suggested. How-
ever, mathematical difficulty hampers the development of
this approach. In the next two sections a particular non-
linear control theory is presented. This theory constitutes
the first step in the synthesis of a nonlinear control system
which obtains control through parameters. Since the func-
tional dependence of the parameters has been established,
the problem is reduced to finding a set of five (constant)
parameters (D,i8,28,17,sv),- Lt should be appreciated, how-
ever, that even the optimization of this five-parameter set
cannot in general be accomplished analytically because of
the overall nonlinear nature of the problem.

Aside from questions on the analytical optimization of
parameters in equation (8), there are equally important
practical questions such as:

(1) Can a useful control system that is described by the

nonlinear differential equation (eq. (8)) be
realized?

(2) If the system is realizable, what is its physical
nature?

(3) If the system is realizable, how does it compare in
performance and complexity with a ‘“good”
second-order linear control system?

There are then mathematical difficulties on the one hand
and physical difficulties on the other. The mathematical
difficulties could be handled by numerical methods of inte-
gration of the differential equation (e. g., utilizing a digital
computer). However, this would give little insight into the
nature of a system that is controlled through discontinuous
variation of the parameters 8, and v,. It has been found
advantageous to investigate the physical questions first and
then -to utilize simulation techniques (analog computer) to
investigate the analytical properties of this type of control.

PHYSICAL REALIZATION
PHYSICAL MODEL

It is desirable to study the nature of a physical control
system that is described by an ensemble of eight linear
differential equations with control being accomplished by

. discrete values).
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switching from one member of the ensemble to another.
To do this, equation (8) is rearranged as shown below:

PtoD Lty=a()—(2D8n Potry) (1)
or in operational notation

(-+2Dp+ 1)y 2— @DBap+12)y a2)

Forgetting for the time being that the parameters 8, and
s are actually functions, one interpretation of this opera-
tional equation and thus of equation (8) is shown in figure 3.

"Output

Bn | 200

In

-

Fraure 3.—Block diagram of equation (8) assuming that 8. and vy,
are constant (denoted by encircling dotted line).

Figure 3 can be modified to take into account the fact
that B, and v, are stepwise switching functions of time,
their implicit variable (i. e., 8 and v, can each take on four
This is shown symbolically in figure 4.
The explicit functional dependence of the parameters 8, and
s has not yet been given and is thus indicated as a switch-
ing logic of undefined character.

p2+20p+l

Input Output

| P |~
o 20p [—1
.|
B
F———
o
5
.1
:— Switching _=
i | logic |
e — - — = J

FI(;U‘B.E 4.—Block diagram of equation (8) taking into account
stepwise switching nature of Sm and v,.
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Utilizing the block diagram of figure 4, the physical inter-
pretation of the nonlinear control system described by equa-
tion (8) is quite straightforward. This system consists of:

(1) A linear feedforward portion. This portion could be
a linear control system in itself (e. g., the simple position
control servo of figure 1 and equation (5)). -

(2) A feedback switching circuit comprised of:

(a) Four discrete values of proportional feedback v,
(two positive and two negative as shown in fig. 2)

(b) Four discrete values of derivative feedback 2D8,,
(two positive and two negative as shown in fig. 2)

(c¢) A switching logic which at any instant determines
the particular combination of derivative and propor-
tional feedback 2D8,,,v. employed.

SWITCHING LOGIC

In this section it is shown that digital-computer techniques
can be utilized to establish the switching logic for the feed-
back switching circuit mentioned in the previous section.

Recall that the parameters 8,, and v, have been defined
as functions; that is,

Br=—18sgn (y'e)—B sgn (y'e’)
m=0,1,2,3

(13)
Ya=""17 8g0 (ye)—zy sgn (ye’)

n=0,1,2,3

where the subsecript convention has been given by equations
(9). Equations (13) determine the switching logic. Thus,
for example, g; is chosen when (y’¢)<{0 and (y’¢’)<{0 and v,
is chosen when (ye¢) >0 and (ye’) >0, so that the combination
Bsvo 18 chosen when (y'¢)<<0, (y'¢")<0, (ye)>>0, and (ye’)>0.
At this point it appears necessary to form the products
ye, ye’, y'e, and y’e’ and then to find the sign of these prod-
ucts in order to establish the switching logic. Physically,
however, the process of multiplication is to be avoided if
possible. That there is a possibility of avoiding multiplica-
tion may be gleaned by realizing that

sgn (ab)=sgn (a) sgn (b)
since
ab=a b
Tad] ol [6]

Thus equations (13) may be rewritten as
Bn=—sgn (y')[18 sgn (¢)+.8 sgn (¢')]

m=0,1,2,3 14
. 14
Ya=—5g0 ) [yy sgn () +gv sgn )e’)]

n=0,1,2,3
Again the subscript convention is defined by equations (9).

Thus, utilizing equations (13), for example, B85 is chosen
when

y'>0, <0, ¢'<0
y'<0, ¢>>0, ¢/>0

k)

or when

REPORT 139]1—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

7o 18 chosen when

y>0, €20, ¢’ >0
or when
¥<0, ¢<0, ¢'<0
so that the combination (8s,7,) is chosen when
- y>01 y,<07 6>0,.6,>0
or when

<0, ¥">0, <0, ¢’<0

From this example it can be seen that it is not necessary to
find the signs of products but rather that it is sufficient to
find separately the signs of ¥, ¥, ¢, and ¢’.

Since the sign of a variable is quantized binary information
of the variable, it is convenient to utilize digital-computer
techniques to further the switching logic. This may be done
as follows:

Let the convention be adopted that y>>0 be represented
by 0 (binary zero), y<{0 be represented by 1 (binary one),
and similarly for y’, ¢, and ¢’. If the ordered sequence is now
established as

W, v,ee)

four-digit binary logic may be employed to encode equation
(14). In particular, a binary coded decimal may be used
(see table 1).

It was mentioned in property (4) of the section “Properties
of Equation (8)” that not all of the 16 possible Ba,v»
parameter combinations were allowed under their definition.
This was termed an exclusion principle on the allowed coeffi-
cient combinations. One of the advantages of the suggested
binary coding scheme of table 1 is that this exclusion principle
is built into the code. To understand this, consider the
example of the combination Byy, given previously. In the
code language Bsv, is chosen when the binary number 0100
or 1011 occurs. What is implied by this example is that a
binary number and its complement must be identical (i. e.,
0000=1111, 0111=1000) as far as the switching logic is
concerned. Thus out of the 16 possible four-digit binary
numbers only the first 8 are unique. That is, in counting
from 0 to 7 in a binary coded decimal, if complements are
included then so are the other 8 possibilities, 8 to 15 (seco
table 1).

The allowed B,y parameter combinations along with the
encoded logic of table 1 are summarized in matrix form in
table 2. Examples are given to illustrate the meaning of

the table. In general the allowed subscript combinations
are
m=n=0, 1, 2, 3
or
m=n
m-+n=3

REALIZATION COMPLETED

Now that equation (14) has been successfully interpreted
(encoded) in binary-logic form (table 2), the realization of a
feedback switching circuit utilizing this encoded logic is a
typical digital-computer switching-circuit problem. As is
characteristic of any synthesis process there will, in general,
be many ways to design this feedback switching circuit.
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Output

20p H

collcolcol|co
Sensed | |I l T,

variables  y y e e

Fraure 5.—Block diagram showing complete physicsl interpretation
of equation (8). CD, zero-coincidence detectors.

The block diagram of figure 5 shows one design that com-
pletes the physical interpretation of equation (8) along the
lines started in figures 3 and 4.

In figure 5 the feedback switching circuit consists of:

(1) The four discrete values of both derivative and propor-
tional feedback 2D8,,vx

(2) A relay switching circuit that con:uects the proper
feedback combination

(3) Zero-coincidence detectors CD that drive the banks of
relays to one position or the other depending upon the 51gns
of the sensed variables

It should be noted that, depending upon the application,
other forms of sign-sensing devices and other switching de-
vices such as diodes, transistors, electronic switches, and/or
magnetic amplifiers could be employed to obtain other reali-
zations of equation (8). In any case the following properties
are basic to any realization:

(1) The signs of the four variables Y, ¥, e, and ¢’ are
sensed. This may be thought of as the process of “reading
in” the four-digit binary logic of table 1.

(2) On the basis of the 2* possible binary decisions the re-
quired feedback combinations 2DB,,,y, as defined in table 2
are connected around a linear second-order member.

It is important to stress that the only types of nonlinear
operations required in the realization of this nonlinear con-
trol system are switching-type operations. In addition, all
the switching is to be performed in feedback paths, which
means that the switching can be done at low electronic
power levels. These practical features are definite design
advantages. Thus, in summary, it can be said that this
type of nonlinear control system is not only physically
realizable but also practical from an instrumentation stand-
point.

EXPERIMENTAL VERIFICATION OF NONLINEAR CONTROL
THEORY
DISCUSSION OF SIMULATION TECHNIQUES

Simulation techniques were chosen as an experimental
mode of investigation of performance of the nonlinear con-
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trol system realized from equation (8). These techniques
offer the following advantages:

(1) Proximity to the actual control system. This means
that the same practical features with regard to instrumenta-
tion (see the section entitled ‘“Realization Completed’’) are
exploited to fullest advantage. Thus, just as in the actual
system, the only nonlinear device required for the simulated
model is & binary logic feedback switching circuit (see ap-
pendix C for details). The linear portion of the system is
simulated on an analog computer. Here the only operations
required are summations, two integrations, and one dif-
ferentiation. These are all operations which an analog
computer does well. It can be said then that the accuracy
to which the simulated model simulates equation (8) de-
pends primarily upon the realized feedback switching cir-
cuit. The most essential type of imperfection to be ex-
pected in this switching circuit is time delay in switching.
Exactly the same type of imperfection will be met in the
physical control system. Thus there will be more nearly a
one-to-one correspondence between the simulated model and
the actual system than between either and equation (8).

(2) Convenience in experimental investigation. In order
to characterize the output ¥ of the nonlinear system com-
pletely, a set of five parameters

' P A (D7 IB: 2ﬁ; 17, 27)

and the input z must be specified. In the performance
evaluation of the system it is necessary to be able to vary
these characterizing quantities conveniently. Simulation
techniques allow this.

PRESENTATION OF EXPERIMENTAL RESULTS

Figures\ﬁ to 17 present experimental results obtained from
the simulation studies of equation (8). Briefly, the results
are presented as follows:

Figures 6 to 12 compare the responses (output ¢ and error e)
of the nonlinear system with that of a linear system for
various classes of inputs . (In comparing the linear and
nonlinear responses it will be noted that there is not exact
synchronism of events because, with the available experi-
mental facilities, it was necessary to obtain the two responses
separately.) The linear system utilized is that which con-
stitutes the feedforward member of the nonlinear system
corresponding to the case where g,=v,=0. The nonlinear
system. for figures 6 to 15 is

Br=—Fo=2
=—p=0.5

Ts=—v0=2

T3=—7=0.5

Figure 6 compares the system responses to sinusoidal
inputs and figure 7 shows the responses to triangular-wave
inputs. A partially integrated square wave %(7) is defined
as the output of a first-order linear system characterized by
the transfer function H(p)=1/(ep-+1), when the input
2,(7) i8 & square wave. The responses of linear and non-
linear systems to this type of input are given in figure 8.
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(#) Nonline=r system; @=qw/w,=0.1 to 0.4 in 0.1 steps.
(b) Line~r system; Q=ofe,=0.1 t0 0.4 in 0.1 steps.
(c) Nonlinesr gystem; @=cy/e0,=0.5 to 0.8 in 0.1 steps.
(d) Linear system; 2=w/w,=0.5 to 0.8 in 0.1 steps.

(e) Nonlinear system; 2=w/w,=1.0 to 2.0 in 0.2 step

(D Linear system; 2=e/w,=1.0 to 2.0 in 0.2 steps.

Fiaure 6.—Linear and nonlinear system responses for 20-volt peak-to-pesk sinusoidal inputs with frequency Q varied. D=0.6; 2.5 small divisions
on time seele=1 normelized time unit; tick marks at bottom of figures indicete when frequency was vaiied.
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20y T = w‘,l

(a) Nonlinear system Q — 2, T—O 1to0 O
(b) Linear system; Q=2x/T= 4
(¢) Nonlinear system 0 2 T-—O 5to %
2.0

8
o0

(d) Linear system; @ 5to 0
(e) Nonlinear system Q= :%/Tx:rl to
(f) Linear system; 0=2:/ =1.0 to 2.0 in 0.2 steps.

Figurs 7.— Linear and nonlinear system responses to 20-volt peak-to-peak triangular-wave inputs with period T varied. D=0.6; 2.5 small divisions
on time scale=1 normalized fime unit; tick marks at bottom of figures indicate when periods were varied.

626507—60——92
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(a) Nonlinear system; a=4 and 2. Tick mark at bottom of figure indicates when « was varied.
(b) Linear system; a=4 and 2. Tick mark at bottom of figure indicates when « was varied.
(¢) Nonlinear system; =1 and 0.5. Tick mark at bottom of figure indicates when « was varied.
(d) Linear system; «=1 and 0.5. Tick mark at bottom of figure indicates when « was varied.
(e) Nonlinear and linear systems; «=0. Tick mark at bottom of figure indicates demarcation between nonlinear and linear systems,

Fraure 8.—Linear and nonlinear system responses to 20-volt peak-to-p
on time scale=1 no

The responses of the systems to small sinusoidal inputs are
given in figure 9. TFigure 10 gives the responses to clipped
sinusoidal inputs. Figure 11 shows the response of the
nonlinear system to sinusoidal inputs that have been dis-
placed with a direct-current component. Figure 12 shows
the responses of linear and nonlinear systems to a triamgular-
wave input whose periods and amplitudes are randomly
modulated.

Figures 13 to 15 deal with the effects of imperfections that
are likely to be encountered in the actual control system.
Figure 13(a) gives the results and data of an experimental
investigation on the effects of switching delays due to

k E rtially integrated square-wave input.

D=0.6; 2.5 small divisions
ed time unit.

threshold in sensing the sign of the error, sgn (e) for a fri-
angular-wave input. The experimental results for a con-
stant 9-volt input (see fig. 13(b)) are givén below:

Threshold, mo_ _ . 14 26 36 44
Peak-to-peak error, my___ oo ... 44 124 - 220 290

Figure 14 shows the effects of placing progressively smaller
limits on the acceleration of the nonlinear control system.
For each value of %’/ limit considered, the output, output
derivative, output acceleration, and instantaneous errox
are shown. The effects of a velocity limit on performance
of the nonlinear and linear systems are compared in figure 15.
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(8) Non]mea.r system; @=w/w,=0.1 t0 0.4 in 0.1 steps.
(b) Linear system; ﬂ—w/m,—o 1t00.4in 0.1 8.
(¢) Nonlinear syxtem Q=w/w,=0.5 to 0.8 in 0.1 steps.

Linear system; §=w/w =0.5 to 0.8 in 0.1 steps.
(¢) Nonlinear systemn; 0= /w,=1.0 to0 2.0 in 0.2 steps.
(f) Linear system; Q=ew/c,=1.0 to 2.0 in 0.2 steps.

Fraure 9.—Linear and nonlinear system responses to 4-volt l1()emk-i;a—pea.k sinusoidal inputs with frequency @ varied. D=0.8; 2. 5 small division
on time scale=1 normalized time unit; tick marks at bottom of ﬁgures indicate when frequency was varied,
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(a) Nonlinear system; 2= ofe,=0.1 to 0.4 in 0.1 steps.
(b) Linear system; 2=afw,=0.1 t0 0.4 in 0.1 steps. .
(c¢) Nonlinear system; 2=w/w,=0.5 to 0.8 in 0.1 steps.

0.

(d) Linear system; Q=wfw,=0.5 to 0.8 in 0.1 steps.

(e) Nonlinear system; @=ew/«,=1.0 to 2.0 in 0.2 steps.
(f) Linear system; =wfw,=1.0 to 2.0 in 0.2 steps.

Figurg 10.—Linear and nonlinear system responses to 20-volt peak-to-peak sinusoidal inputs with frequency @ varied that are clipped symmetri-
cally at :ehd 6 volts. D=10.6; 2.5 small divisions on time scale=1 normalized time unit; tick marks at bottom of figures indicate when frequency
was varied. .

v
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(a; 0= w/w,=0.1 to 0.4 in 0.1 steps.

(b) 0=«fw,=0.5 to 0.8 in 0.1 steps.

Thgure 11.—Nonlinear system responses of 20-volt peak-to-peak
sinusoidal input with frequency 2 varied that has been displaced by
—10 volts (direct-current component) for obtaining osculation.
D=0.8; 2.5 small divisions on time scale=1 normalized time unit;
tick marks at bottom of figures indicate when frequency was varied.

Figure 16 presents the responses of some special cases
of the nonlinear system (special with respect to the choice
of the B, and v, parameter values). In this figure the
system responses to a triangular-wave input are given for
four different parameter sets. The parameters pertinent
Lo these results are listed in table 3 for easy reference.

Figure 17 gives the response of the nonlinear system pos-
gessing a low linear damping factor D=0.1.. The responses
are for a triangular-wave input whose frequency was varied
in the same manner as that of figures 7(a) and 7(c).

Detailed discussions of these results are given in the
section entitled “Discussion of Results.”

DISCUSSION OF RESULTS
PERFORMANCE EVALUATION OF SINUSOIDAL INPUTS

To complete the synthesis of the nonlinear control system
that has been derived from equation (8), it is necessary to
choose the magnitudes of the paraméters that characterize
the system, that is, (D;8,28,17,2v) or (D,Bs,8s,7s,vs). It is
expected that the performance of the system depends on

1435

(a) Nonlinear system. " . - sem.
Figure 12.—Linear and nonlinear system responses for triangular-

wave input whose period and amplitude are randomly modulated.
D=0.6; 1 small division on time scale=1 normalized time unit.

Magnified 300 times

Peak-to-peak error

Threshold 4

x and y V//II WW//A
I Vi 000044

| —_—

(b) Trw,l

(a) Nonlinear system response to triangular-wave ingut with period
varied as in figure 7 (a). D=0.6; tick marks at bottom of figure
indicate when period was varied. Threshold in sensing sgn e was
44 millivolts.

(b) Constant input z(r) was 9 volts.
Fiaure 13.—Effects of switching delays due to threshold in sensing
8gn e.
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(a) Nonlinear system; no y

’’ limit.

(b) Nonlinear system; + 12—volt y’’ limit.
(¢) Nonlinear gystem; 4 9-volt ¥’/ limit.
(d) Nonlinear system; 4 73-volt ¢’/ limit.
(e) Nonlinear system; i 6-volt ¥’/ limit.
(f) Nonlinear system; ;|;4§-volt. y’? limit.

Fi1gure 14.—Nonlinear system responses to 20-volt peak-to-peak sinusoidal input with wvarying acceleration limits.

D=0.6; Q=w/w,=0.5;

2.5 amall divisions on time scale=1 normalized time unit.-

the choice of these parameters. For studying their in-
fluence, simulation techniques proved to be very convenient.
Experimental results were given in figures 6 to 12 where
the response (output y and error €) of the nonlinear system
was compared with the response of a linear system for a
variety of inputs. This gives the possibility of establishing
the properties of the nonlinear system not only by itself but
also with respect to a linear standard. The linear system
employed for this purpose was that which constitutes the

feedforward member of the nonlinear system (i.e., Bn=7v»=0).

These experiments allow parameter values for good per-
formance of the nonlinear system to be found. Analytical
and practical considerations that aid in the optimization aro
treated later in the section entitled ‘““Choice of Parameter
Values.”

The sinusoidal responses of the nonlinear and linear systems
are compared in figure 6. Here, the frequency range con-
sidered was 0.1 £Q=w/w,<2. The peak-to-peak input ampli-
tude was 20 volts. , These results show that the nonlinear
system reproduced the sinusoidal inputs up to the frequency
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(a) Nonlinear system.
(b) Linear system.

F1raure 15.—Linear and nonlinear system responses to-20-volt peak-to-peak sinusoidal input with %44-volt velocity imit. D=0.6; Q=2x/T=
0.5; 2.5 small divisions on time scale=1 normalized time unit.

2=1.4 with virtually no instantaneous error when com-
pared with that of the linear system. For higher frequencies
the error for the nonlinear system increased rapidly to the
same order of magnitude as that of the linear system.

Substantially the same comparative performance was
displayed by the two systems when the input was a smaller
(4-volt peak-to-peak) sinusoid as is shown in figure 9.

Figure 11 gives the response of the nonlinear system to a
20-volt peak-to-peak osculating sinusoid over the frequency
range 0.1=9=0.8. This is a severe type of input for the
nonlinear system since both z and z’ simultaneously go to
zero. 'This implies that ¥ and y’ are also small so that in
equation (8) the discontinuous variations of the parameters
Ba,vr cannot be so effective in determining the acceleration
y’’, since

Yy =2—[2DQ+B=)y 4+ (1+va)yl (15)

From, the figures it is seen that the nonlinear system did have
some difficulties near the osculating regions; further, the
peak error increased as the frequency was increased (see
appendix D). As might be expected from equation (15)
this error for small values of ¥ and %’ can be reduced by
increasing the magnitudes of the parameters (this will be
discussed in more detail in the section entitled “Choice of
Parameters’”). At any rate, by comparison, the error for
the present system is always less than that of the linear
system of figure 6. (In the linear realm, error is independent
of a shift in the direct-current level of the input.)

Taken collectively, the 20-volt, the 4-volt, and the oscu-

lating 20-volt sinusoidal inputs tend to form & more realistic
appraisal of the nonlinear system performance than does a
single input amplitude. There is still much that can be
learned from a detailed study of these three responses, but
first it is desirable to obtain some sort of a quantitative com-
parison between the nonlinear and the linear system per-
formance. One such comparison can be made as follows:

(1) Assume that the input to both systems z(r) is, and
has been for a long time, a 4-volt peak-to-peak sinusoid of
frequency

Q=w/w,=0.1

so that as far as the linear system is concerned this is a
steady-state alternating-current input.

{2) Determine how much the band width or the natural
frequency w, of the linear system must be increased in order
that the time average of the magnitude of the instantaneous

error
Q 27 /0
=g [ lelar

for the linear system be reduced to that value given by the
nonlinear system.

Here it is easy to show that for the low-frequency steady-
state alternating-current case

= 4D
E‘Huz? lelm (16)

For an input 2=|z}...¢'?" the steady-state error is given by

..-é_-» = _—_1 iQr
=Y =tlnes <1 1+i92D_—m> ¢
For small values of @ this equation yields
€2 |2 mar[ 1 — (1—3Q2D+ . . .)]e'®"
22 | 2| s (1922D) €07

or
€]z = 2DQ) 2| mex
but
1(r . 2
[elin== | lelmassin Q7 dQ7=2|e|mas
ki 0 aT
therefore

= 4D
qu“; Q|| maz (17)
For the given system and input

Telin=0.15

For the nonlinear system and the same input (approximate
calculation from the much larger and clearer original of

fig. 9 (a))

mmltn =0.01
Thus,

muulm zi I=et!h'n
15

Now from equation (17), since Q@=uw/w,, it is seen that in
order to reduce ﬁun by this factor of 15, w, must be in-
creased by the same factor.
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F1GURE 16.—Responses of nonlinear system with four different para-
meter sets to a 20-volt peak-to-peak triangular-wave input with
fixed period T=10=. D=0.6; 2.5 small divisions on time scale=
1 normalized time unit; tick marks at bottom of figures indicate
demarcation between systems. For systems’ numbering see table 3

REPORT 1391—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

(a) Complete system 1 and system with no derivative feedback 2.
System 1: B3=—'ﬁo=2; B’=_Bl=0¢5; ‘73='—"ro=l2; 73=—71=0.5.
System 2: gy=—Bo=0; fa=—5=0; n3=—y=2; y3=—7=0.5.

(b) System with no ¢’ sensing 3 and system with no e sensing in deri-
Imtivz feedback loop and no e’ sensing in proportional feedback
oop 4.

System 3; fs=—Bo=2; fr=—F1=2; 3= —70=2; ma=—y =2
System 4: fy=—B=2; fr=—pi=—2; p=—v=2; y=-—y=2.

(¢) Complete system 5 and system with no derivative feedback 6.
System 5: fy=—Fe=10; fr=—F1=1; y3=—70=10; ya=—v;=1.
System 6: fy=—Fo=0; Br=—B;=0; v3=—7=10; va=—v=1.

(d) System with no ¢’ sensing 7 and system with no e sensing in deri-
Ya.tivg feedback loop and no ¢’ sensing in proportional feedback
oop 8.

System 7: py=—Bo=10; fz==—p;=10; y3=—7e=10; v3=—7,;=10.
System 8: fy=— Bo=10; o= — 1= —16; 13=—70=10; y3=—¥=10.

Frgure 16.—Continued.

In the example of the linear control system of figure 1 and
equation (5) this increase in o, by a factor of 15 would mean
that the gain K| must be increased by the order of magnitude
of (15)2 since

Kikn
I

The gain K, must be increased by an order of magnitude of
15 if the value of D shall not change. , Such an inerease in
the loop gains is frequently not at all physically possible.

=(e,)?

[

(a; Q2=2x/T=0.1 to 0.4 in 0.1 steps.
(b) 9=2x/T=0.5 to 0.8 in 0.1 steps.

Ficore 17.—Nonlinear system responses to 20-volt peak-to-peak
triangular-wave input with period T varied. D=0.1; 3= —p=12;
Br=—P1=3; va=—v0=2; ya=—+,=0.5; 2.5 small divisions on timeo
scale=1 normalized time unit; tick marks at bottom of figures
indicate when period was varied
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Up to this point little attention has been given to the
detailed nature of the mnonlinear system response. Closer
inspection of, for example, figures 6 (a) and 6 (c) shows that
the output y is a function that links serpentine fashion
(oscillates) at a very high rate about the input z, but still
the magnitude of the error is small. In fact, it is necessary
to inspect the error at a scale 20 times larger than that of
the output even to notice this phenomenon. Mathemati-
cally this means that the functions z and y approach one
another clogsely but that their derivatives differ appreciably.
Physically, however, this is not at all undesirable as long as
the magnitude of the error is small. (Actually for mechanical
systems this property would be useful in preventing static
friction.) This fine-grained oscillating character of ¥ is the
very essence of the nonlinear control theory. Every time
the error or error derivative goes through zero the parameter
set Bum,vs of equation (8) changes discretely as defined in
equations (13) or by the binary logic of table 2. The discrete
changes in the parameters cause discontinuities in the second
derivative '/, which when integrated twice give y its serpen-
tine character. To illustrate this point, the sketch of figure

18 shows samples of the superposed input and output of the

nonlinear system. The input in this case could be that of
figure 6 (a) or 9 (a).

Frqaure 18,—Sketch showing portions of superposed mgut and output
of nonlinear system magnified approximately 10

Cirele (a) in figure 18 is a typical cycle of the oscillating
character of the output y. Commencing at 7, the error
changes sign at 7, the binary number 0011 is “read into”’
the feedback switching circuit of figure 5, and using the
notation of table 2 the parameter combination Byy; is switched
into the circuit. This causes an immediate reversal in the
sign of the output acceleration y’/, so that at time =, the
error derivative changes sign, the binary number 0010 is
read in, and the parameter combination Byy; is switched into
the circuit; acceleration is still in the same direction but
weaker. At time 7 the error again changes sign, the binary
number 0000 occurs, and the combination Byy, is switched
into the circuit; acceleration is in the opposite direction.
At time r; the error derivative changes sign, the binary

5626607—00——93
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number 0001 occurs, and Byy; is switched in; this reduces
the acceleration until at time 7, the error again changes
sign, 0011 occurs, fsvs; is again switched in; the cycle is
complete. Although it- was not mentioned at the time,
figure 2 shows this sequence of Ba,v» combinations. The

nature-of the acceleration resulting from the switching can
be seen in figure 14 (a).

* The comparable switching cyele for ¥ >0 and ¥'<{0 as
shown in circle (b) of figure 18 is:

Logic Parameters

0111 Bovs
0110 B
0100 Bxvo
0111 Bors

Similarly, for <0 and %’<{0 as shown in circle (c¢) of figure
18:
Logic Parameters

1100 Baya
1101 Bava
1111 Bovo
1110 Bim1
1100 ,  Bsws

This is the mirror-image switching cycle for circle (a) (see

property (4) in the section ‘“Properties of Equation (8)" and

also the discussion in the section ‘‘Switching Logic”).
Finally, for <0 and y’>>0 as in circle (d) of figure 18:

Logic Parameters

1000 ﬁo’Y;;
1001 Bl'Yg
1011 Brvo
1010 ﬁz‘)’]_
1000 Bovs

This is the mirror-image switching cycle for cirdle (b).

With this insight into the detailed behavior of the non-
linear system more information can be obtained from the
experimental sinusoidal responses of figures 6, 9, and 11 that
have up until now been treated from o macroscopic rather
than microscopic viewpoint. Along these lines, the following
experimentally observed facts are noteworthy:

(1) In comparing the errors for the 4-volt and the 20-volt
peak-to-peak sinusoidal inputs in the frequency range of
good reproduction 0.1 <9=0.8, it is seen that:

(2) The magnitudes of the errors are nearly the same (see
figs. 6 (a) and 6 (c) and 9 (=) and 9 (¢)).

(b) The period of the error is generally smaller in the
larger amplitude case. This is even more pronounced if the
4-volt peak—to-pea.k cage is compared with figure 11 for ¥
in the region of —20 volts.

(2) Good reproduction is characterized by many ¢ and ¢’
switchings (see fig. 18) per cycle of the input. As input
frequency is increased and the upper limit of small error is
reached (fig. 8 (e) and 9 (e)) the ¢ and ¢’ switchings become
more infrequent until there are finally only two of each per
cycle of the input.
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The fact that the period of the error is smaller for larger
inputs can be gleaned from equation (8) when it is rearranged
as

Y''=—[2D(1+B.)y +v:y1+—y)
or roughly .
Y = —[2D(1+8a)2'+va2] ' (18)

For a system with specified 8,,,v. parameter values, the larger
input and input derivatives will give stronger discontinuities
in ¥’/ as the Bm,y. combinations change. This implies that

Brmyvs Will change more often making the period of the error:

smaller. See figure 14 (a) for the justification of the approxi-
mations in equation (18) since ¥, ¥’, '/, and = are shown in
this figure. (The input = was sketched in by hand.)

In the frequency range of good reproduction the reason
that the magnitude of the error is virtually independent of
the input amplitude cannot be explained from equation (8)
since this fact is intimately tied in with the imperfections
in the feedback switching circuit (see section entitled
“Effects of Switching Imperfections” for details). As
measured from the experimental sinusoidal responses,
|é|mer is of the order of 15 to 20 millivolts. It might be
noted that earlier in this section the smaller 4-volt peak-to-
peak input sinusoid was employed in the comparison when
it was determined that , should be increased by a factor

of 15 in order to obtain the same |e[;;,. This choice of the
smaller input was decidedly in favor of the linear system
since the linear error increases linearly with input amplitude.
Thus, if the 20-volt peak-to-peak input were used, an
increase in w, by a factor of 5X15=75 would be required

to obtain the same |e|y,.

The fact that there is a correlation between good repro-
duction (small error) and the existence of many error and
error-derivative switchings is very important since it is the
key to understanding the upper limits of good performance
of the nonlinear system. One approximate way to investi-
gate this matter is to establish a deficiency between the
output acceleration required for good reproduction (many
switchings) and the available output acceleration. Equation
(18) gives an approximation to the output acceleration when
the system is functioning well. As an example of this
approach consider the input 2 to be & sinusoid of frequency
2 (fig. 6 or 9). Since

[2" | o=@} | mas

it is to be expected that the nonlinear system will have the
greatest difficulty in the vicinity of |z|mq- Where, fréin equation

(18),
Iy”lmz I'Ynx'm.ax

Thus, if in this region the output y is going to interweave
the input z (as is characteristic of good reproduction), then

¥ [maz> 2"’ |mas

This inequality then places an upper limit on good perform-
ance of the system in response to sinusoids

Q<Vlalmer (19)
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_or the system used in obtaining the experimental results of
figures 6 and 9, |va|mez=2; therefore,

2<+2

Inspection of both figures 6 (¢) and 9 (e) tends to substantiate
the above result. For example, in figure 9 (e) it is seen for
Q=1.2 (after the transient caused by turning on the input
has been absorbed) that as the input goes through its maxi-
mum, frequent ¢ and e’ switchings stop and do not oceur
again as the frequency is increased.

PERFORMANCE EVALUATION OF INPUTS OTHER THAN SBINUSOIDAL

In the preceding section only the sinusoidal response of
the nonlinear control system was discussed in studying
performance. However, it is easy to see that the nonlinear
system will cope with any input in the same manner as it
does with sinusoids. Thus, as long as the magnitude of
input acceleration does not continuously exceed the available
magnitude of the output acceleration the switching process
will comimence and_excellent reproduction will result. This
type includes inputs with discontinuous derivatives and
discontinuous inputs. The experimental sinusoidal »re-
sponses of figures 6, 9, and 11 themselves give some indica-
tion of these facts. For example, in figure 6 (a) there was
an initial discontinuity in the input and there were dis-
continuities in the input derivative when the frequency
was changed. The results in figures 7, 8, 10, and 12 prove
further that the nonlinear system response is not dependent
upon any specific type of input. Given in these figures are
triangular-wave, partially integrated square-wave (including
square-wave), clipped sinusoidal, and random?* inputs,
respectively.

It should be noted that in the literature (refs. 1 and 3 to 5)
& marginal-type input that would present a case of indecision
to the switching circuit of the nonlinear system is discussed.
This case has never been encountered experimentally oven
when the attempt was to produce this case. Thus, the
marginal-type input is not considered practically important.

USE OF PHASE-PLANE METHODS TO STUDY PERFORMANCE

The phase-plane methods that were used in the original
analytical developmert of equation (8) (refs. 1 and 3 to 5)
can also be gainfully employed in studying the performance
of the nonlinear control system derived from equation (8)
once the B, and vy, parameter values have been specified.
(In this section it is important to distinguish between S,
and v, parameter values, i. e., 83=2, 8;=1, etc., and Bnyx
parameter combinations, i. e., 3y, etc.)

1 In the strict statistical sense the probability that the Inputs shown {n figures 12 (a) and
12 (b) are not samples of random stationary time serics is admittedly high becnuso of axisting
experimental facflities. These Inputs were obtalned by random manual modulatfon (both
frequency and amplitude) of a triangular-wave input of peak-to-peak amplitude A and perfod
T whereo

024220 volts

0.120=2x/T308

Random manual modulation means that the operator varied by hand both the froquency
and amplitude controls of the input generator &3 randomly as possible. In tho present In-
vestigation the comparative results of the linear and nonlinear responses to what appear to
be band-limited random inputs are felt to be more important than the exact statistical prop-
erties of the inputs.
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If in equation (8) the error e=(z—y) is assumed small,
then the output y can be approximated by portions of
curves that satisfy the autonomous differential equation

TY 42D (1460 T pyg=0 20)

where D, B, and v, are defined in the section ‘“‘Nonlinear
Control Theory.” Further, if dy/dr=7’, these approxi-
mating curves are defined in the 7’y phase plane by

=7 Ve=MEGN—7' ™ (1)
where M is a constant depending on initial conditions and

)\1. = —D (1 +l3m) £ 0y (1 +ﬂn)2'—')’u

Equation (21)- comes from integration of the first-order
differential equation

ay’ _—2D(A+Bn)Y —7aY
dy A

=—2D(1+8:)~a 37 @

Since the particular 8, v, combination employed in each
point of the phase plane depends upon ¥, ¥/, ¢, and ¢/, four
approximating curves go through each point (see appendix
E). The tangents to these curves (eq. (22)) indicate four
directions which lie in an angular sector (see fig. 19). This
angular sector is defined by the two extreme directions which
apply if e and ¢’ have the same sign. The two inner direction
values apply if ¢ and ¢’ have opposite signs. By superposing
the input 2’z phase plane on this ¥’% plane it can be stated
that at any point the tangent to the input phase curve must

s = Tt
[ ai=maas -

2y

Fiaure 19.—Phase-plane angular sectors defined by equation (22) for
thﬁ gbv2eg pnra.meter values. ;8=1.5; s8=0.5; 17=0.45; 3v=0.05;
2D = .

3 W=
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be included within the shaded angular sector (discussed
above) if small error is to be obtained. Thus, equation (22)
cen be used to study performance. The width of the angular
sector changes with the ratio 7/¥’ for given 8, and v, param-
eter values. It is largest (180°) for ¥’;—0 and smallest for
y=0 if (14+B.) and v, have the same sign. However, the
width for %’—0 is not significant since all phase curves
(including the input) have infinite slope there. Thus, along
the line 7'=0 the curvature of the input phase curve must be
used to determine limits on good performance. The radius
of curvature of the input must be smaller than that of the
flattest approximating curve.

In order to illustrate the use of these phase-plane methods
in predicting limits of good performance consider the example
of a sinusoidal input z=sin Qr. In this case the input is
represented by an ellipse in the phase plane and

d@)__ o
dz 0 z’

In the superposed z2’ and %%’ phase planes of figure 20 are
shown three sinusoidal-input phase curves (i. e., three
different frequencies) and the families of phase trajectories
of equation (22) for the By, v, combinations where ¢ and ¢
have the same sign. (In order to avoid extensive computa-
tions the parameter values indicated in fig. 20 are those
of an earlier investigation (seeref.1).) Thus, the tangents to
two intersecting phase curves define the angular sector at that
point, as has been discussed. By tracing the inputs with dif-
ferent values of © it can be understood that good performance
for the presented system can be obtained only for 2<{Q, where
Q2,18 the parameter belonging to that ellipse which has the same
radius of curvature as the curve through (7,7)=(1,0).
(Note that the radius of curvature of the approximating
curves jumps at ¥'=0 and is smaller for %’<0.) In the
first quadrant (i. e., approaching ¥’'=0 from %’>>0) this
radius of curvature is given by

Pomaz= 5 = +0=7xF
Since at this point the ellipse radius of curvature is Q%/1.
P7ay
Therefore, for the first quadrant

Q<A (23)

Here it should be noted that this is the same result as that
obtained in the section entitled ‘“Performance Evaluation of
Sinusoidal Inputs” even though the parameter values are
different. For the system of figure 20, v;=0.5; thus 2</0.5.

Anpother example is given by the input x=1—e =" with
d(@®")/de=—c. Since the smallest angular sector is at ¥=0,
a=2D(1+Bms) determines the limits on performance.
This means that for the system represented in figure 20 good
control can be expected for a value of « slightly smaller than
0.75.

A step input is represented by a=1—¢ 2" with a—. The
picture in the phase plane is t=1—(1/a)z’ with a—». For
very large values of « this is a straight line which forms a
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Figure 20.—Superposed input and output phase planes showing avail-
able angular sectors for sinusoidal inputs. =L1.5; 1v=0.45; ;8=
0-5; 27=0-05; 2D=0-25; “"=2; lﬁlnu=2; 7|nu=0-5; Iﬂlnin=1:
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small angle with #’=0. For a—>« the curve degenerates to a
point (z=1,2'=0). There isno doubt that a perfect followup
of a step is not possible because for practical reasons the line
for large values of « does not lie in the allowed angular sector
at any point it is passing through.

Related to the step input is the square-wave input. A por-
tion of the output phase trajectory for a square-wave input
to the system of figure 8 (e) is shown in figure 21. Figure 21
is computed with the help of the differential equation

dy _ il
dy’ 2D +B)y" 1+ (1+r)y—2

This equation is obtained from equation (8) by replacing
d*y/d=byy"(dy’,/dy). Inthisexample one cannotimmediately
use approximating curves for designing the output because
the error is too big at the start of the motion. The computed
diagram is in good agreement with the test run shown in

figure 8 (e).

) "

Square wave

Fraure 21.—Portion of output phese diagram for squsre-wave input.
Bi==—F=2; B=—F=0.5; v3=—1=2; nn=—m=05; D=0.6;
wWy=1,

EFFECTS OF SWITCHING IMPERFECTIONS
In equation (8) it is assumed that the parameters 8, and v,
change upon exact zero coincidence of any one or more of the
variables y, ¥/, ¢, and ¢’ as defined in equation (13) or by the
logic of table 2. Physical imperfections, however, preclude
this possibility. Thus, in the simulated model of equation
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(8), exact zero coincidence cannot be detected because of
threshold effects, and relays are subject to time lag (both
mechanical and electrical), dead zone, and chatter.

In the present section an attempt is made to evaluate the
effects that these switching imperfections had on the experi-
mental result in order to obtain some practical design criteria
for specifying switching requirements for good performance
in other applications of this method of nonlinear control.

The experimental results of figures 6, 9, and 11 can bo used
to demonstrate that relay imperfections were not important
in the simulated model. Comparison of the sinusoidal re-
sponses in these fizures has shown that the period of the error
became smaller as the magnitude of the input amplitude was
increased. (This was discussed in the section “Performance
Evaluation of Sinusoidal Inputs.”) From figure 11 (a) in the
region of |y| =20 volts (the largest magnitude considered in all
the experimental studies) the period of the error 77, is

measured as
To=wi,=0.2

There are four parameter switchings per error cycle (seo fig.
18). Assuming these to be approximately uniformly spaced,
the minimum time between parameter switchings is approxi-
mately 7'./4. Now assuming that the relays must be capable
of closure in-at least one-fifth of this time, the maximum
allowable (real time) switching delay ¢, is

witmg =~ Tof20=10"% (24)
In this simulated model w,=1 radian per second. Thereforo,
tma =10 millisec

As given in table 4, the relays employed were capable of
closure in 3 milliseconds or less so that they were entirely
adequate for the experimental studies.

(After the investigation reported here in the main text was
finished, Dr. H. E. Lindberg performed a number of experi-
ments to study quantitatively the influence of time delays on
the performance of this control system (see appendix A). He
investigated the influence of switching delays in the indi-
vidual relays and additionally that of a delay in the output
line of all relays (represented by an analog-computer approxi-
mation of e¢~*e?). The results indicate that for sinusoidal
inputs with frequencies up to 0.8 of the natural froquency of
the undamped linear member w,, for example, the maximum
error can be held within 5 percent of the maximum value of
the input with relay delays as large as 47/w, milliseconds.
For a natural frequency of 10 cps this would be a delay of
0.75 millisecond. After this relay delay is selected, the maxi-
mum error per input cycle is considerably less for lower input
frequencies. For instance, at w=0.lw, the maximum error
per input cycle would be slightly more than 1 percent. Also,
the average error would be less than this (see fig. 31).)

The ability to disregard the relays in the evaluation of the
effects of switching imperfection on performance leaves only
threshold effect in sensing the sign of the variables y, ¥/, e,
and ¢’ to be considered. As has been observed and discussed
in the section “Performance Evaluation of Sinusoidal Inputs’’
the amplitude of the error for the nonlinear system was rela-
tively independent of the magnijtude of the input (i. e., when
the system is operating in the rapid e to ¢’ switching sequence
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80 that this is the minimum-error case). This constancy of
the lower limit on the error magnitude is caused by switch-
ing imperfections and thus threshold in sensing the signs of
variables, Since under a normal switching sequence there
are many more ¢ and ¢’ switchings than ¢ or ¢ switchings
and since the error is of an order of magnitude less than the
error derivative, the primary cause of the lower limit on
error is localized as threshold in sensing the sign of the error.
Figure 13 shows the results of an investigation of this
threshold effect. In all system-response figures except
figure 13 the peak-to-peak threshold was approximately 14
millivolts. In figure 13 (a) the peak-to-peak threshold was
44 millivolts so that figures 7 (a) and 13 give a good com-
parison of the effects of these two threshold values.

CHOICE OF PARAMETER VALUES

The performance of & completely specified nonlinear sys-
tem has been discussed. The parameter values for this
system, that is, :

D=0.6
Bs=—Py=2
Br=—F=0.5
V3=—"o=2
Ya=—m=0.5

were initially chosen in the following manner: D was first
selected to give good linear system performance; then the
smallest values of the 8, and v, parameters giving good non-
linear system performance were chosen experimentally from
a systematic variation of parameters utilizing the simulated
system, This particular set of 8,, and v, parameter values
can thus be denoted as (B, yx)mis since they establish the
lower bound on parameter values for good nonlinear system
performance. The physical significance of (Bm,¥Ys)mis 18 that
loop gains and acceleration requirements of the linear mem-
ber are minimized since 8, and v, are feedback gain con-
stants,

From the discussion in the section “Performance Evalua-
tion of Sinusoidal Inputs’ centering about equation (18) or
from the phase-plane methods of the preceding section it is
to be expected that & general increase in the parameter
values over (8u,vs)min Will result in improved nonlinear sys-
tem performance by increasing the available acceleration of
the system or increasing the angular sectors in the phase
plane. Inspection of figures 16 (a), system 1, and 16 (c),
system 5, shows this to be true. In figure 16 (a) the param-
oter values were (Bm,va)mix 88 given above, and in figure
16 (c), system 5, they were

Bs=—F=10
f=—hi=1
vs=—"7=10
Yo=—71=1 -

On comparing the performance of these two systems it is
noted that the corners of the input triangular wave are re-
produced with less error by the system of figure 16 (c).
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Thus far'then it would seem thet there is no upper bound
on the parameter values; that is

(ﬁm;')’u)max_:’ @

Invariably, however, there will be upper bounds on the values
of the parameters because of acceleration limits in the phys-
ical system. Figure 14 shows the effects of placing pro-
gressively smaller acceleration limits on the system. Here
it is seen that for |y’/[;>0.3|y"/|me= performance is not ap-
preciably affected but for values less than this good per-
formance is no longer obtained so that acceleration limits
definitely tend to determine (8m,vYa)mes- In general, then,
there will be & whole range of values of 8, and v,; that is,

(ﬂmy')’n)m> (.Bm;'Yu) > (ﬁm;')"u)mia

for which good nonlinear system performance results. The
final choice must depend upon the particular application and
can easily be found experimentally.

There are certain special cases of the 8, and v, parameter
values that lead to simplified feedback switching circuits
and thus lead to nonlinear systems that are simpler to realize.
In table 3 three of these are denoted as case (1) no derivative
feedback, case (2) no ¢’ sensing, and case (3) no e sensing
in derivative feedback loop and no ¢’ sensing in proportional
feedback loop.

By making inoperative the appropriate relays in figure 5
the simplified switching circuits for these cases are easily
obtained. It is desirable then to inspect the performance
of these special cases (in comparison with that of the com-
plete system) to ascertain whether or not as good performance
can be obtained with less complexity. Figure 16 shows the
response of these cases in comparison with that of the com-
plete system. Figures 16 (a) and 16 (b) differ from figures
16 (¢) and 16 (d) in that the general magnitude of the
parameters was increased in figures 16 (c¢) and 16 (d).

These results show that case (2) is not worthy of much
consideration since the magnitude of the oscillating error
is large. Cases (1) and (3), however, should be considered
for certain applications. For example, if it were known
that the amplitude distribution of the input was relatively
void near zero, then case (1) would serve as well as the
cage of the complete system. Case (3) shows nearly constant
percentage error so that it could be useful in cases where
accuracy was not so important as economy in components.

To this point the parameter D has received little attention
mainly because its value (within limits) is not particularly
important. It has been observed experimentally that D
may be anywhere in the range 0D =<1 even for (8x,Yn)min
and performance of the nonlinear system is not affected.
Inspection of the block diagram of the nonlinear system
(fig. 4 or 5) shows that the physical significance of the
variation of D for given values of 8,,v, is that the damping
factor of the linear member and the derivative feedback
around the linear member change simultaneously. A case
of more practical importance such as might arise in aero-
dynamic applications of this type of control system is the
variation of D for given values of Dfn;v,. That is, the
damping factor of the linear member alone varies while the
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feedback values around this member remain unaffected.
Even in this case it has been found that the nonlinear system
performs well. For example, figure 17 shows the response
of the nonlinear system

D=0.1
By=—Bp=12
Bi=—pF=3
Y3=—70=12
Y1 —%=0.5

to triangular-wave inputs, while figure 7 shows the Tesponse
of the system

‘D=0.6
By=—Fo=2
Pa=—p=0.5
Ya=—m=2
Ys=—7%=0.5

{o the same inputs. Comparing these results it is seen that
performance is nearly the same for both systems.

PRELIMINARY EXTENSION TO HIGHER ORDER SYSTEMS

From a practical standpoint, limitations in the appli-
cability of the nonlinear control system described by equation
(8) do not stem from the inability to realize the feedback
switching circuit but rather from assuming the linear
member to be of second order. In many cases a more
realistic approach is to consider the linear member to be of
higher order but still predominantly second order. Figure
22 shows the block diagram of a third-order system of this
nature. The linear feedforward member could be, for
example, the servo of figure 1 including the effects of arma-
ture inductance. The same second-order feedback switching
circuit was still employed. However, it could not be

|
(To+1){p% +20p+1)

Input Output

20p |—

Switching logic
of. table 2
- Sensed T T T
variables-——y e é'

Fraure 22.—Block diagram of third-order nonlinear control system.
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(8) Nonlinear system. fy=—g=2; 315= —p1=0.1; r3=—7=2; 7=
=
(b) Linear system.

Fraure 23.—Linear and nonhnear third-order system responses to ran-
dom input. T=0.1; D=0.6; 2.5 small divisions on timo scale=1
normalized time umt

expected that the B,,v, parameter values remain the same.
Figure 23 compares the response of a third-order linear and
nonlinear system. Here it is seen that the nonlinear system
still responded with much less error than the linear system.

On the basis of the comparative performance of these two
systems it seems important to further studies toward control
of general higher order systems using techniques similar to
those developed in this investigation.

CONCLUDING REMARKS

From control equation (8) a second-order nonlinear
control system that tends to maintain small instantancous
error for relatively arbitrary inputs has been synthesized
using digital-computer techniques. The only type of
nonlinear operations required in the realization are switching-
type operations (zero-coincidence detection and parametor
switching). The switching requirements are severe from
the aspect of detector sensitivity and switching time delay
but not impractical since all the switching is done in feedback
paths at low power levels and may thus be performed
electronically.

The system demands sensing of error and error rate of
change. Since general noise in & system of this type has to
be expected, both error and error rate are smoothed. The
influence of time delay in the relays and of a general transport
delay on the performance of the system has been investigated
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and diagrams have been developed which allow one to
estimate the maximum error due to imperfections.

It is a difficult task to compare the performance of & non-
linear system with that of a linear system because no general
criterion for comparison is available. Since for nonlinear
systems the law of superposition does not hold, it is not
ndequate to choose the response to a certain input (e. g., the
step input) as a criterion for performance comparisons. A
number of different inputs therefore have been chosen for
exhibiting the qualities of the nonlinear system.
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Experimental results indicate that this type of nonlinear
control system performs better than a linear control system
having a normelized frequency 15 times greater. Perform-
ance is evaluated in terms of the average value of the magni-
tude of the instantaneous error for band-limited inputs.
Further, the nonlinear system performance is virtually
independent of variations in the damping factor of the
gystem. .

Stanrorp UNIVERSITY,
StanrorD, CaLrr., October 18, 19567.

pe



APPENDIX A

INFLUENCE OF TIME DELAYS
By H. E. LINDBERG

In the experiments reported in the main text of this report,
the relays were carefully selected in order to keep the bad
effects of finite closure time to & minimum and no really
quantitative study of such closure delays was made at that
time. Later, studies of this particular system were continued
and quantitative information about the influence of imper-
fections on the performance of the control system is presented
here. )

One numerical and two experimental methods of finding
response with relay delays are used. Plots of maximum
error incurred per input cycle are given for sinusoidal inputs
of various frequencies and for various relay delays. Effects
of a transport time delay are also discussed.

Influence zones and types of delays.—The system de-
scribed by equation (8) can be interpreted as describing
either of the systems shown in figure 24 if there are no
imperfections to be considered. However, there are cer-
tainly relay imperfections and there may be transport

X m S 4
T pe+20p
-_———
el ~
R Brm s 20p

N
(0) ] ~— _

X m 1 y
p2+20p+|
—
SN
// Bm \\ 20p
| \
\ /
- 7, >
(b) ?\\ -
]

"S\vifding computer

8&3 Motor-load system,
Simplified airframe system,

Figure 24.—Block diagrams of two physical systems giving same
differential equation providing no imperfections exist. m, point
transport delay is introduced into circuit.
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“delays. Relay imperfections would affect diréctly those

parts of the systems that are encircled by dotted lines in
figure 24, that is, only the discontinuous feedback paths.
If no further imperfections are considered, the results of such
a study apply equally well to both configurations shown in
figure 24 because the switching computer sees the same
linear member in either case. Other studies, however, can
conceivably be made on these systems where the difference
between the two configurations becomes significant. A
study of transport delays introduced at points m, for instance,
would certainly give different results for figures 24 (a) and
24 (b) because in figure 24 (a) the output ¢ is fed directly
through this point while in figure 24 (b) no such feedback
is present because the equivalent of such a feedback is built
into the differential equation of the mechanism being
controlled (equivalent, i. e., when there are no imperfections).

One of the most serious imperfections to be considered in
the design of a relay servomechanism is the time lag between
the application of a signal to the relay and the actual closing
or opening of the relay. Associated very closely with this
imperfection are other phenomena, such as signal threshold,
relay dead time (the period of time in which the relay arm
is in contact with neither terminal), and contact bounce.
The only imperfection studied here is relay time lag, because
in most relays dead time is very small as compared with the
relay lag time. Contact bounce is also a secondary effect
and is better studied in an actual installation. By appro-
priate interpretation, the results of this time-lag study can
be extended to include the effect of signal threshold which is,
of course, a variable time delay.

Rather than increasing the natural frequency of the
system being studied until the effect of inherent relay lag
became noticeable, an artificial lag was introduced while
the system was allowed to operate in a conveniently low
frequency range. Two techniques were used to provide
the time lag. The first was a direct delay of each relay
signal, effected by providing an additional relay in series with
each original relay and a resistance-capacitance delay circuit
in between (this will be referred to as the electromechanical
simulation). The second method consisted of inserting an
analog-computer approximation of e¢~*¢* in the total output
line of all of the relays. The two methods gave consistent
results.

Electromechanical simulation of time delay.—The arm-
ature of each logic relay in the control system with no
intentional delays was energized by the plate current of a
zero-coincidence detector circuit. In the delayed system,
the plate current is made to flow through an added relay.
This relay energizes an adjustable resistance-capacitance
time-delay circuit which in turn feeds the armature of the
logic relay. Two of the four circuits are shown in figure 25.
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F1aure 25.—Schematic diagram of electromechanical switching-delay simulation.

The amount of delay between activation of the zero-coin-
cidence circuit and the closing or opening of the logic relay
was measured by observing the coincidence pulse and the
logic-relay contact pulse with a long-persistence oscilloscope
whose beam traversed the scope at a known rate and was
triggered by the coincidence pulse. The voltage supply in
the time-delay circuit was adjusted so that the closing and
opening delays were roughly equal. It is estimated that the
aceuracy of time-delay measurement was of the order of 10
percent. Delays of less than 25 milliseconds ((=r+ with the
analog-computer wiring used) were difficult to measure by
this method, and, more important, could not be easily simu-

lated by this particular circuit because of high contact cur--

rent in the added relay which caused the contacts to weld.

The delayed system was operated using sinusoidal inputs
of 20-volt peak-to-peak amplitude at frequencies from 1/10
the natural frequency of the undamped linear system to the
full value of the natural frequency. Nondimensional time
delays of w,t,=0.05, 0.075,0.100, and 0.150 were used. EKnow-
ing that the error caused by these delays should vary linearly
with the applied voltage (see the section ‘“Response to sinus-
oidal inputs’ which follows), runs were also made at 10- and
40-volt peak-to-peak amplitudes as a check of the self-
consistency of the data.

Anslog-computer simulation of time delay.—An analog-
computer approximation of ¢%? was wired using & circuit

suggested by Morrill (ref. 6). The circuit is based on the
Padé second-order approximation of e—tep

12—6t,p+-12p° ta’p’ fapﬂ
12-+6tap+ 1%

1—t,p+

td‘?‘ tdsps Lotdﬁpﬂ t¢7p1 N

24 144 1,728 7 " (Ala)

which is roughly equivalent to the first six terms of the Taylor
expansion of ¢~%? about t;p=0:

P =g , 12 18Dt U p5 18p° +
@9 "% tor 120t T

(A1b)

The circuit is shown in figure 26. The element values were
found by comparing the transfer functions of the circuit with
the desired Padé polynomisal fraction and equating coeffi-
cients of powers of p. The transfer function of the circuit in
& nondimensional form is:

Ry RRi RRiCi
go Rio R, RsR; R, p (A2)
B R BEG L RiROO)E

where the resistances R, are as shown in figure 26.
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Figure 26.—Analog-computer circuit for Padé second-order approxi-
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rse~tg?

Comparing this with the Padé approximation written

12tdp
12F6tap+ tap?

6 equations for the 10 resistors and 2 capacitors can be writ-
ten in terms of the time delay ;. The resulting six degrees
of freedom on the circuit parameters were used to select the
convenient values shown. Figure 27 shows the location of
this delay circuit in the overall simulation of the relay con-
trol system.

e P 1 (A3)
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p2 +20p+ 1
// \\
+ Bn — 200
eloP \l Il
+ N A »
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Frqore 27.—Insertion of time-delay circuit of figure 26 into control-
system analog.

Since this method was used only as a check on the electro-
mechanical method, the only input studied was & constant
of 10 volts at delays of £,=0.025, 0.050, 0.075, and 0.100 second.

Simulation of & time delay by this method allowed greater
flexibility of the location of the time delay. The delay was
inserted as shown in figure 28 to simulate the effect of a
trapsport time delay in the system. The output for this
configuration was essentially the same as that found for relay
delays. This result was to be expected because the essential
difference between a transport delay and relay delay in this
system is that relay delays affect only the feedback terms
which go through the relays while transport delays affect
the input z as well. But for the great majority of operation,
z changes very slowly as compared with the changes in the
feedback terms and hence, it makes very little difference in
the response whether the input z is delayed.
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Figure 28.—Insertion of time-c(liellay circuit for study of transport
elays.

The responses of the two configurations become more
nearly identical as the magnitude of the time delay decreases.
If the basic controlled element is & motor load as shown in
figure 24 (a) and if a transport delay were introduced at
point m, the resulting output would differ somewhat more
from a relay-delayed output because then both z and the
direct i path as well as the discontinuous relay signals would
be delayed. No tests were run with this configuration.

Computational study of relay delay.—Response of the
system with relay lag was computed using the differential
equations directly. To simplify the amount of calculations,
only response to constant inputs were computed. Calcula-
tions were based on approximating the output with a series
of parabolic arcs. This is equivalent to assuming that 3"/
is copstant during each computation interval, a reasonable
assumption except for large time delays. The input studied
was z=10 and calculations were made until the limit cycles
on a plot of E against ‘(ii—lj’,were approached within the accuracy
of computation. Computations were made such that the
limit cycles were approached from the inside in some cases
and from the outside in others. Limit cycles for various
time delays are shown in figure 29. Computation intervals
were such that two parabolic ares were used in each quadrant,

The computation details are as follows: With the assump-
tion that the output is a series of parabolic arcs, the equation
for the error during the nth interval between switch points is:

n—‘ M+Ent Tn+§EM Tl (A4)

where 7,=0 at the start of any interval and E,, E,,/, and
E,/’ are the initial error, error velocity, and error accelera-
tion, respectively, for the nth interval. Upon differentiating,

. the velocity during any interval becomes:’

En’=Eui, +Ent” Tn (A5)

Eliminating the time r, between these two equations, the
equation of the phase-plane trajectories becomes:
; 1 E,
B Byt ‘)':| o7 B (49
Equations (A4) and (A5) are used to find E,, and

at an actual switch point by letting r,=w,#s (the delay time)
and using as initial conditions E at E'=0 or E’ at =0
(the conditions at & theoretical switch point). When this
point is found, equation (A6) is used with E’,.,_E,, and
E./=E,' and the next theoretical switch point is computed
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Fiaure 29.—Error limit cycles due to switching delays for a constant
input of =10 volts.

by setting either E,=0 or E,’=0 depending on which type
of switch point is being approached. In all cases the accel-
eration B,/ is found from the differential equation of the
control system, equation (8). For the special case where
2=10, equation (8) can be rewritten using y=FE-x as:

E"42D(14-Bw) B’ + (1 +vn) E=—10v» (A7)

An effort was made to determine some general method for
predicting the limit cycles as an analytic function of #;, D,
Bm, o0d v, but, even with this very simple input, the
limit cycles are approached in such a complicated way that
finding such & function would be a formidable task at best.
However, a systematic series of calculations as shown here
could be made and charts plotted to indicate the effect of
these various parameters.

Comparison. of the three methods for constant inputs.—
For a constant input of =10 a good comparison of results
from the three methods of studying relay delay was made by

constructing a logarithmic plot of error versus time delay. .

Data from the two experimental methods had to be modified
slichtly to account for actual relays délays and thresholds
of zero coincidence. The modification consisted of measur-
ing the system error with no intentional delay, finding the
delay required to produce this error from the calculated plot
of error versus delay, and adding this delay to each of the
experimental points. (The effective unintentional relay
delay was found to be 20 milliseconds, This is considerably
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greater than the 3-millisecond delay specified by the relay
manufacturer. The additional effective deley is due to the
inherent thresholds in the switching circuit which can be
considered as a variable time delay. Also, the actual delay
of the relays may have exceeded 3 milliseconds.)

After this modification, the analog-computer data were
indistinguishable from the calculated data. Data from the
electromechanical method also agreed quite well but differed
from the computed results by as much as 10 percent at a
time delay of 0.12. (See fig. 30.)

Response to sinusoidal inputs.—As mentioned before, the
error resulting from relay lags varies linearly with the magni-
tude of the input 2. That this is true is easily seen by examin-
ing equation (8). If zisreplaced by Kz and y by Ky where K
is a constant, the differential equation remains unchanged
and the error e=z—y is now e*=Kr—Ky=Ke.

The reader should be warned that although this is a well
known property of linear differential equations, this system
remains essentially nonlinear. TUsing the definitions of
B and v, given in the text following it, equation (8) can be
written:

¥ +2D(sgn y'—1f sgn e—f sgn €’)]y’|+
(sgn y—rv 8gn e—yy sgn ) |y|== (A8)

With the equation in this form, the reader can easily verify
that if 9, and y; are solutions to equation (A8) in its homoge-
neous form (z=0) then %; ¥ is not necessarily a solution

10. /

8 /
. /

N

o
=

o

Error, percent of npuf level
o
|
™

o2}
\

3 o Calculate o

/ 0 Analog e_fd raw dota

" o Analog € '9” modified data
2 / 4 Electro-mechanical raw data
) v Electro-mechanical modified

data

A5 %
'I.OI N5 02 03 04 06 10 A5 2

Time delay, #y

Fiaure 30.—Comparison of methods of switching-delay study with a
constant input of z=10 volts,
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Freure 31.—Responses for inputs of various frequencies with relay delays of «,ta=0.10.

because of the nonlinear character of the absolute value and
signum functions.

However, it can be concluded from the linear property
that if the error encountered for any constant input is
obtained, the error for any other constant input can be found
by a simple scale change. For very low frequency sinusoidal
inputs where z’ and '/ are relatively small it was found that
the error was governed almost entirely by this consideration.
This is demonstrated by figure 31 (2) for a 40-volt peak-to-
peak input with w=0.1w, and & delay of »,{,=0.100. Notice
that the envelope of the error is very nearly a sine wave with
its peak value occurring at the peak value of the input.

As the input frequency is increased, the point of greatest
error shifts away from the peak of the input. In figure 31 (b)
for w=0.4w, the greatest error occurs almost ¥ cycle after
the input reaches its peak in either direction. This is because
the (148.)y’ term becomes sizable in this frequency range
during the acceleration period (i. e., as |z’| increases) and
reaches & maximum at ¥ cycle past the input peak. This

large feedback term is applied in an undesired direction for
0.10 unit of nondimensional time and causes the large lag
error.

At still higher frequencies the 3’/ term coupled with the
(14+va)y term both reach their maximum at the peak value
of the input and the greatest error again occurs near this
time. An example of this is given in figure 31 (d) for an
input frequency of w=1.0w,. For intermediate frequencies
the peak shifts around depending on initial conditions as
shown for ©=0.6w, in figure 31 (c).

From an overall standpoint a plot of the greatest error
versus frequency showed an approximately linear increase
of error with frequency (see fig. 32). Similarly, a plot of
greatest error versus time delay is linear up to about
w,t;=0.10 for frequencies up to »=0.8w, (see fig. 33). An
interesting comparison of these results and the results found
for the system with no intentional delays is shown in figure
34. Also plotted in this figure is the maximum error for the
linear system alone (y/+2Dy' +y=xz).
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Fiaure 32.—Maximum error occurring during each input cycle plotted
against Input frequency with switching delay as a parameter.

z=10 sin w{=10 sin(c%)r volts; By=—Fo=2;

Br=—p$1=0.5; 3= —73=2;
yi=—v1=0.5; D=0.6; w,=1.0.

Specification of time-delay tolerances.—If an actual sys-
tem were to be set up such as that described by equation (8),
figure 32 would provide an indication to the designer of how
to specify relay-delay tolerances. Take, for example, a
system which has an undamped natural frequency f,=10 cps.
If the error of this system is to remain below 5 percent of the
maximum value of the input for frequencies up t0 w=0.8w,,
then the relay delays must be held below 0.75 millisecond.
This result is found by first finding that value of w,#; on the
w=0.8w, curve of figure 33 at which the maximum error is
5 percent. This value of w,t;i80.047. The actual time delay
ta is:

0.047 0.047 0.047
— o, 071_—0.000755%

(A9)

This value of time delay will not necessarily assure that
the error will always remain within 5 percent of the input
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for other types of inputs which are band-limited to 0.8,
because of the nonlinear nature of the system. However,
it is known from the special type of inputs studied that if
the error is to be as specified the time delay can be at most
0.75 millisecond.

For sinusoidal inputs with ©w<{0.8w, the maximum error
will be less than 5 percent of the maximum value of the
input. For example, at w=0.lw, the maximum error will
be slightly more than 1 percent.

20
w/w, /
1.8lo 08 /n
‘le 6
16l 4
a 3 / 4
sldle 2
T
El o A\fé v
= .8 1
=6
4 A
2 % —
' \
0 005 010 0.15

Relay delay, w,/y

Frgure 33.—Maximum error occurring during each input eycle plotted
against smtchm% delay with input frequency as a parameter (same
date as for fig. 32).
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Figure 34 —Maximum error plotted against input frequency for
several time delays and for linear member only.

APPENDIX B
COMPARISON OF EQUATION (8) AND NONLINEAR CONTROL EQUATION OF REFERENCES 1 AND 3 TO 5

COMPARISON OF NOTATIONS

In original notation the nonlinear control equation was
given as (refs. 1 and 3 to 5)

a+ Tt b Bep oymy (1) B
where
Yo(t) output
n(®) input

Ab,

b=v| 1450 sen B Horem B |

c=c+|:1+% sgn (y,E) +?|.- sgn (ZloE')]

E=@W,—y))

( Y=d( )/dt

Aby,Aby,Acy, Ay copstants, Ab;>Aby,Ac; > Acy
atbtct constants
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In terms of the notation of equation (8) the above equation
is written

a+§-:-‘!r+b+(1 +6) 4 Tt (try=2(2) (B2)

where
Bw=—18sgn (y'e)—sBsgn (¥’e’);m=0,1,2,3
Yu=—r7 8gn (ye)—sysgn (ye’);n=0,1,2,3

e=(z—y)

18,28,17,37 constants, 18>8, 172y

atbt,ct constants

The subseript convention is
Bs=18-128 Ya=ry+av
Be=18—28 Ya=17—2Y
Bir=—0F ‘)’17= 72
Bo="—0s Yo=—73

Ewdently, the correlation between equations (B1) a,nd B2)
is then

Y=Y

T=1 .

Ab Ab Ac Acy
1B b+l’ 2B b-:l 1Y c+ll Y oF

e=—F

and at, b+, and ¢t are the same.
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In either notation a set of seven (constant) parameters is
needed to characterize the system. For example, in equation

(B2) the set (at,b%,ct,18,:8,17,47) is sufficient.
NORMALIZATION OF NONLINEAR CONTROL EQUATION

When considering control systems it is possible to reduce
the number of parameters necessary to specify the nonlinear
system. To do this a form of normalization familiar to
linear theory is utilized. First, it should be realized that if

error is to be defined as e=(z—y) then ¢t=1. Thus,
assuming c¢t=1 equation (B2) may be written
1 d‘y
where
wl= 1
=
2D_,,

Wy

Introducing normalized time r=w,, equation (B3) be-
comes

d

’y+2D(1+ﬁ,.) Yt (1 +ry=2(r) (B4)
Thus, knowing the natural frequency of the undamped
linear system, «,, the number of parameters necessary to

specify performance in the nonlinear case is five, that is,

(D: lﬁ, 26; 17, 27)
or alternatively
(D: B3, B, vs, ‘Yz)

APPENDIX C

SIMULATION OF SECOND-ORDER NONLINEAR CONTROL SYSTEM

EQUIPMENT

Experimental studies were carried out with the following
equipment:
(1) General equipment:

(2) Analog computer, Beckman Ease

(b) Low-frequency function generator, hp 202 A
(input device)

(c¢) Pen recorder, Sanborn Twin-Viso (output
device)

(d) Vacuum-tube voltmeter, RCA WV—97A

(e) Oscilloscope, Dumont 304-A

(2) Special equipment:

(a) Binary-logic switching circuit employed in
conjunction with (a), described in detail in
section ‘Binary-Logic Relay Switching
Circuit.”

COMPUTER SETUP

The computer diagram for the differential equation
P 12D +60) Tt Hry=2() ©D

is given in figure 35. The correspondence between this sim-
ulated system and the block diagram of figure 4 or 5 is

strajghtforward (see ref. 7). Operational amplifiers 1 to 6
are used in simulating the linear member of the physical
nonlinear system. Resistor Ry provides adjustment of the
linear damping factor D. The input to this simulated linear
member is 2— (208, +v«y) where z is obtained from the
input device, while the values of feedback 208,y and v,y
are obtained with resistors R; through R, (see table 5)
connected to ¢y’ and y through a binary-logic relay switch-
ing circuit derived in the following section. Amplifiers 7
to 10 are sign changers. The four variables y, 7/, e, and ¢’
whose signs are to be sensed are made available as shown in
the lower right of figure 35.

BINARY-LOGIC RELAY SWITCHING CIRCUIT

To complete the simulation of equation (8) it is neces-
sary to.implement the binary logic of table 2. Figure 5
shows a relay switching circuit (designed on an “and/or”
basis) that realizes the necessary logic.

In order to preclude the possibility of time delay in switch-
ing, “fast’”’ relays have been employed. The average prop-
erties of the 14 double-pole single-throw relays comprising
the switching circuit are given in table 4.

The necessary synchronism in relays connected by dashed
lines (fig. 5) is obtained by series connection of field coils.

[N
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Figure 3b.—Computer diagram for simulation of eqﬁation (8).

Tnto the four channels of field coils thus formed is read the
four-digit binary logic of table 2 where now

0=TFunction>0=No coil current
1=Function<<0=Coil current

This process of reading in the binary logic may be done by
monitoring the variable (y, ¥/, ¢, ¢') with four separate zero-
coincidence detectors or amplitude selectors (denoted CD
in fig, 5 and described in detail in the following section).
The output of these coincidence detectors then drives the
respective channels of relay coils.

SENSITIVE TRANSISTORIZED ZERO-COINCIDENCE DETECTOR

One of the four identical amplitude selectors designed for
use with the switching circuit of figure 5 is shown in figure 36.
This circuit basically consists of a grounded emitter PNP
transistor stage 7 driving a pentode pulse amplifier T3.
(Tt should be possible to utilize a transistor in place of the
pentode if desired.) Four relay coils connected in series
form the plate load of T2 Positive feedback I, has been
incorporated for regenerative switching.
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-75v 8% (210 v regulated)
7 ?
100K 47/1 aTK ha___JRelay coils.
2w - 10-kv d-c
8 ) resistance
4.7 meg & i ot VR 105
300K | ¢
5-meg Q) R !
potentiometer
15 43 | : ark
‘ (2N36) —
l ¥ T 7, (BAHS)

T T3 (IN36)

{‘_—l 250-8 potentiometer
—1_ l

Figurre 36.—Transistorized zero-coincidence detector.

The operation of this circuit is as follows: When the input
voltage V becomes more negative than —50 millivolts,
current starts to flow in the base-emitter region of I7.
This initiates collector-emitter current which effectively
grounds the collector and thus the grid of 7:. Plate cur
rent flows in T} so that the relays which form this plate load
are switched to the up position (fig. 5). Positive feedback
R; has been incorporated to make the switching regenera-
tive. Stages Tt and 73 will continue to conduct until ¥V
goes positive by 50 millivolts, at which time current is cut
off in T} and thus T:; the relays return to the normally
closed positions (down in fig. 5). .

Refinements that have been included in this circuit are:

(1) Adjustable positive feedback R;. This feedback gives
control over the zero-sensing threshold of the detector. The
greater the positive feedback the greater the threshold.
This adjustment is desirable for studying the effects of
threshold in sensing discussed in the section ‘“Effects of
Switching Imperfections.” The measured peak-to-peak
threshold values obtainable with this arrangement were a
maximum of 400 millivolts and & minimum of 60 millivolts.
(In the computer setup it was necessary to amplify error e
that formed the input to one of these detectors five times in
order to bring the switching threshold down to 15 millivolts,
peak to peak.)

(2) Adjustable bias for emitter of T;. This is necessary to
compensate for the slight positive bias (approximately
equal t?i\)o millivolts) given to the base of T, by the positive
feedback R,. ‘

(3) A clamping or clipping diode T, to protect the transis-
tor T, from excessive base-emitter inverse voltages. Thus
it can be seen that the input impedance of this coincidence
detector is 15 kilohms since the base of T is effectively always
grounded.
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APPENDIX D
BEHAVIOR OF OUTPUT IF INPUT AND INPUT DERIVATIVE ARE SIMULTANEOUSLY SMALL

Assume that the input is a curve which may be approxi-

mated by
r=ar

for values 7<{8. Since 2'=2«r, both input and input
derivative vanish with 7—>0. The input phase curve is

9:=4—1a (z')?
The output depends on the initial conditions:

(1) For y(0)=0 and '(0)=0

yma o Db ey ]

(2) For y(0)=0 and ' (0)=¢
y=a[r—D(+Bz)7+ . . ] ]

(3) For y(0)=¢, and 3’ (0)=0

— |:1+<%7—> Y :|

In all cases reproduction of the input is not perfect very
close to 7=0; however, in cases (2) and (3) switch points
may occur for rather small values of . In case (1) no
switch point close to 7=0 can be expected. This case will
rarely occur; in most cases neither (0) nor %'(0) will be
zero. Then the output is a superposition of cases (2) and
(3). In this event the error e=z—y is given by

e=—ez—e7+| at-e D(14-Bn) —es (#)-l— .. .]T’

It is evident that for small values of ¢ and e the error grows
with «. This can easily be seen in the results of figure 11.
The input was =A(1—sin Qr); that means, near =0, the
input may be approximated by a parabola with a=1/2(0")A
or the errors near z=0 grow with Q2.

APPENDIX E
APPROXIMATING CURVES

The approximating curves which can be used to trace the
output for a given input form & network in the phase plane.
It has proved practical to present the network for ¢ and ¢’
with the same sign in one sheet (e. g., see fig. 20) and the
network for ¢ and ¢’ with opposite signs on another sheet.
Superposition of both sheets allows establishing of the
four approximating curves through each point of the phase
plane.

The approximating phase curves are determined by
equation (21). Since the values A; and A, change from
quadrant to quadrant the curves are composed of portions
of different a.nalytlca,l curves which are patched at '=0
and y=0.

The roots A; and A; depend on D, B, and v,; they may
be complex or real. If the roots are complex, the approxi-
mating curves are curves of the spiral type which wind
around the origin of the phase plane. In the case of real
roots the curves have a quite different character. This
can easily be understood by transforming the equation of
the approximating curves (see refs. 1 and 3 to 5 and ch. V

of ref. 8). For real roots the new coordinates x and » are
introduced: Thn—T =n
YN—Y =

37 (e)).

Then equation (21) yields
;)2_—_-_M“)\I

If A and A; are real and of opposite sign, the curves in the
pv plane have a hyperbolic character with (u,»)=(0,0) as
saddle point (see fig. 37 (2)). If A and X; are of equal
sign, the curves have a nodal point (see figs. 37 (b) and
In figures 38 and 39 phase curves with saddle
point and stable and unstable node are shown in the original

Y ¥’ plane.
The approximating curves are composed of portions of
these different types (see fig. 40).

There is no need of avoiding Bns,v, combinations which
lead to node-type approximating curves because only por-
tions of these curves are used. In the earlier publications it
appeared as if (in either one of the networks of approximating
curves) one set of curves had to be formed by curves of
spiral character (complex roots \). However, this has
proved to be an unnecessary restriction. There might be
some trouble with node-type curves if large delays in switch-
ing should occur (e. g., delays in 4’=0 switching in fig. 40).
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Frauore 38.—Phase curves with saddle point.
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Fiaure 30.—Phase curves with nodal point.
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Figure 40.—Composition of an approximating curve.
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TABLE 1.—CODING SCHEME FOR SWITCHING LOGIC FROM
EQUATION (14)

[0, function>>0; 1, function<0]

Binary coded decimal — {Decimal

[=]

y e

2

It e i e el e e O DO OOOOO
Il el OO OO it = OO0
HRHOOMMOORHOOHROOS
rNOHOHOHOHOHORO MO

ORIV W=D

TABLE 2.—MATRIX OF ALLOWED Ba., v~ COMBINATIONS
AS DETERMINED BY ENCODED SWITCHING LOGIC
OBTAINED FROM EQUATION (14)+

Bo b1 B Ba
Yo 0000 0100
1111 1011
7 0001 0101
1110 1010
72 0110 0010
1001 1101
73 0111 0011
10600 1100
*» Examples:
s s phon 0 oss o 020 £0 2248 30
i e. v e ;
(2) Bry1 i3 chozen when 0101 occurs', i e.,, Ey)O’, y’,<0’, e>0,, e’<0§,
or when 1010 occurg, i. e., (<0, ' >0, ¢<0, ¢>0);

(3) Bivs is not possible.

- Connections:
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TABLE 3.—PARAMETERS FOR FIGURE 16

Figs.16(a) and 16(b)

Figs. 16(c) and 16(d)

Complete system

System 1: System 5:
ﬁ3= ——Bomz y3= —70=2 ﬁ8='—ﬁ0= 10 y3= —yp== 10
Bi=—p=0.5 13=—7=0.5 Br=—p=1 T1=—y1=1
Case (1) No derivative feedback
System 2: System 6:
ﬁ3=—30=0 rI= —-Y°=2 ﬁ3= ——cﬁo=0 Yy= —rp= 10
pr=—p=0 m=—v=0.5 By=—p8;=0 12=—7=1
. Case (2) No ¢ sensing
System 3: System 7:
By=—F=2 m=—7=2 Bi=—Fp=10  yy=—vypy=10
Br=—p1=2 m=—y=2 Br=—p1=10  yy=—y=10
Case (3) No e sensing in derivative feedback loop and no ¢’ sens-
ing in proportional feedback loop
System 4: System 8:
By=—F=2 m=—v=2 B=—ph=10 yH=—y=10
Br=—p=—2 m=—7=2 Bi=—p=—10 yy=—y=10

TABLE 4—AVERAGE PROPERTIES OF RELAYS FOR
SWITCHING CIRCUIT OF FIGURE 5
Description: General Electric CR~2791 double-pole single-throw

relay mounted on 5-prong Amphenol base with permanent alu-
minum dust cover

{

2
3 L i 3
5 g%
' f i
1 1

Electrical Properties Values
Coil resistance 2.5 kilohms
Coil current for positive | 5 to 10 ma

action
Pull-in time 2 millisec
Drop-out time 3 millisec

TABLE 5—CORRESPONDENCE BETWEEN ADJUSTABLE
COMPUTER ELEMENTS AND PARAMETERS OF EQUA-
TION (8)

Corresponds Units,

Element to kilohms
Ry (2D)—1 100
Ry 2DBy) 1 100
Rs 2Dp;)! 100
Ry 2DBz) ™! 100
R; 2Dy 100
Rs g‘)‘o) -1 100
7 )t 100
Rs E'r:)"‘ 100
Ry )1 100




